Program Listing for File point.hpp
↰ Return to documentation for file (cif++/point.hpp
)
/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2020 NKI/AVL, Netherlands Cancer Institute
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <array>
#include <cmath>
#include <complex>
#include <cstdint>
#include <functional>
#include <valarray>
#if __has_include(<clipper/core/coords.h>)
#define HAVE_LIBCLIPPER 1
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wignored-qualifiers"
#include <clipper/core/coords.h>
#pragma GCC diagnostic pop
#endif
namespace cif
{
// --------------------------------------------------------------------
const double
kPI = 3.141592653589793238462643383279502884;
// --------------------------------------------------------------------
template <typename T>
class quaternion_type
{
public:
using value_type = T;
constexpr explicit quaternion_type(value_type const &value_a = {}, value_type const &value_b = {}, value_type const &value_c = {}, value_type const &value_d = {})
: a(value_a)
, b(value_b)
, c(value_c)
, d(value_d)
{
}
constexpr explicit quaternion_type(std::complex<value_type> const &z0, std::complex<value_type> const &z1 = std::complex<value_type>())
: a(z0.real())
, b(z0.imag())
, c(z1.real())
, d(z1.imag())
{
}
constexpr quaternion_type(quaternion_type const &) = default;
constexpr quaternion_type(quaternion_type &&) = default;
template <typename X>
constexpr explicit quaternion_type(quaternion_type<X> const &rhs)
: a(static_cast<value_type>(rhs.a))
, b(static_cast<value_type>(rhs.b))
, c(static_cast<value_type>(rhs.c))
, d(static_cast<value_type>(rhs.d))
{
}
// accessors
constexpr value_type real() const
{
return a;
}
constexpr quaternion_type unreal() const
{
return { 0, b, c, d };
}
constexpr void swap(quaternion_type &o)
{
std::swap(a, o.a);
std::swap(b, o.b);
std::swap(c, o.c);
std::swap(d, o.d);
}
// assignment operators
template <typename X>
constexpr quaternion_type &operator=(quaternion_type<X> const &rhs)
{
a = static_cast<value_type>(rhs.a);
b = static_cast<value_type>(rhs.b);
c = static_cast<value_type>(rhs.c);
d = static_cast<value_type>(rhs.d);
return *this;
}
constexpr quaternion_type &operator=(quaternion_type const &rhs)
{
a = rhs.a;
b = rhs.b;
c = rhs.c;
d = rhs.d;
return *this;
}
constexpr quaternion_type &operator=(value_type const &rhs)
{
a = rhs;
b = c = d = static_cast<value_type>(0);
return *this;
}
// parts are set to zero.
constexpr quaternion_type &operator=(std::complex<value_type> const &rhs)
{
a = rhs.real();
b = rhs.imag();
c = d = static_cast<value_type>(0);
return *this;
}
// other assignment-related operators
constexpr quaternion_type &operator+=(value_type const &rhs)
{
a += rhs;
return *this;
}
constexpr quaternion_type &operator+=(std::complex<value_type> const &rhs)
{
a += std::real(rhs);
b += std::imag(rhs);
return *this;
}
template <class X>
constexpr quaternion_type &operator+=(quaternion_type<X> const &rhs)
{
a += rhs.a;
b += rhs.b;
c += rhs.c;
d += rhs.d;
return *this;
}
constexpr quaternion_type &operator-=(value_type const &rhs)
{
a -= rhs;
return *this;
}
constexpr quaternion_type &operator-=(std::complex<value_type> const &rhs)
{
a -= std::real(rhs);
b -= std::imag(rhs);
return *this;
}
template <class X>
constexpr quaternion_type &operator-=(quaternion_type<X> const &rhs)
{
a -= rhs.a;
b -= rhs.b;
c -= rhs.c;
d -= rhs.d;
return *this;
}
constexpr quaternion_type &operator*=(value_type const &rhs)
{
a *= rhs;
b *= rhs;
c *= rhs;
d *= rhs;
return *this;
}
constexpr quaternion_type &operator*=(std::complex<value_type> const &rhs)
{
value_type ar = rhs.real();
value_type br = rhs.imag();
quaternion_type result(a * ar - b * br, a * br + b * ar, c * ar + d * br, -c * br + d * ar);
swap(result);
return *this;
}
friend constexpr quaternion_type operator*(const quaternion_type &a, const quaternion_type &b)
{
auto result = a;
result *= b;
return result;
}
template <typename X>
constexpr quaternion_type &operator*=(quaternion_type<X> const &rhs)
{
value_type ar = static_cast<value_type>(rhs.a);
value_type br = static_cast<value_type>(rhs.b);
value_type cr = static_cast<value_type>(rhs.c);
value_type dr = static_cast<value_type>(rhs.d);
quaternion_type result(a * ar - b * br - c * cr - d * dr, a * br + b * ar + c * dr - d * cr, a * cr - b * dr + c * ar + d * br, a * dr + b * cr - c * br + d * ar);
swap(result);
return *this;
}
constexpr quaternion_type &operator/=(value_type const &rhs)
{
a /= rhs;
b /= rhs;
c /= rhs;
d /= rhs;
return *this;
}
constexpr quaternion_type &operator/=(std::complex<value_type> const &rhs)
{
value_type ar = rhs.real();
value_type br = rhs.imag();
value_type denominator = ar * ar + br * br;
quaternion_type result((+a * ar + b * br) / denominator, (-a * br + b * ar) / denominator, (+c * ar - d * br) / denominator, (+c * br + d * ar) / denominator);
swap(result);
return *this;
}
template <typename X>
constexpr quaternion_type &operator/=(quaternion_type<X> const &rhs)
{
value_type ar = static_cast<value_type>(rhs.a);
value_type br = static_cast<value_type>(rhs.b);
value_type cr = static_cast<value_type>(rhs.c);
value_type dr = static_cast<value_type>(rhs.d);
value_type denominator = ar * ar + br * br + cr * cr + dr * dr;
quaternion_type result((+a * ar + b * br + c * cr + d * dr) / denominator, (-a * br + b * ar - c * dr + d * cr) / denominator, (-a * cr + b * dr + c * ar - d * br) / denominator, (-a * dr - b * cr + c * br + d * ar) / denominator);
swap(result);
return *this;
}
friend constexpr quaternion_type normalize(quaternion_type q)
{
std::valarray<value_type> t(4);
t[0] = q.a;
t[1] = q.b;
t[2] = q.c;
t[3] = q.d;
t *= t;
value_type length = std::sqrt(t.sum());
if (length > 0.001)
q /= static_cast<value_type>(length);
else
q = quaternion_type(1, 0, 0, 0);
return q;
}
friend constexpr quaternion_type conj(quaternion_type q)
{
return quaternion_type{ +q.a, -q.b, -q.c, -q.d };
}
constexpr value_type get_a() const { return a; }
constexpr value_type get_b() const { return b; }
constexpr value_type get_c() const { return c; }
constexpr value_type get_d() const { return d; }
constexpr bool operator==(const quaternion_type &rhs) const
{
return a == rhs.a and b == rhs.b and c == rhs.c and d == rhs.d;
}
constexpr bool operator!=(const quaternion_type &rhs) const
{
return a != rhs.a or b != rhs.b or c != rhs.c or d != rhs.d;
}
constexpr operator bool() const
{
return a != 0 or b != 0 or c != 0 or d != 0;
}
private:
value_type a, b, c, d;
};
template <typename T>
inline quaternion_type<T> spherical(T const &rho, T const &theta, T const &phi1, T const &phi2)
{
T cos_phi1 = std::cos(phi1);
T cos_phi2 = std::cos(phi2);
T a = std::cos(theta) * cos_phi1 * cos_phi2;
T b = std::sin(theta) * cos_phi1 * cos_phi2;
T c = std::sin(phi1) * cos_phi2;
T d = std::sin(phi2);
quaternion_type result(a, b, c, d);
result *= rho;
return result;
}
using quaternion = quaternion_type<float>;
// --------------------------------------------------------------------
template <typename F>
struct point_type
{
using value_type = F;
value_type m_x,
m_y,
m_z;
constexpr point_type()
: m_x(0)
, m_y(0)
, m_z(0)
{
}
constexpr point_type(value_type x, value_type y, value_type z)
: m_x(x)
, m_y(y)
, m_z(z)
{
}
template <typename PF>
constexpr point_type(const point_type<PF> &pt)
: m_x(static_cast<F>(pt.m_x))
, m_y(static_cast<F>(pt.m_y))
, m_z(static_cast<F>(pt.m_z))
{
}
constexpr point_type(const std::tuple<value_type, value_type, value_type> &pt)
: point_type(std::get<0>(pt), std::get<1>(pt), std::get<2>(pt))
{
}
#if HAVE_LIBCLIPPER
constexpr point_type(const clipper::Coord_orth &pt)
: m_x(pt[0])
, m_y(pt[1])
, m_z(pt[2])
{
}
constexpr point_type &operator=(const clipper::Coord_orth &rhs)
{
m_x = rhs[0];
m_y = rhs[1];
m_z = rhs[2];
return *this;
}
#endif
template <typename PF>
constexpr point_type &operator=(const point_type<PF> &rhs)
{
m_x = static_cast<F>(rhs.m_x);
m_y = static_cast<F>(rhs.m_y);
m_z = static_cast<F>(rhs.m_z);
return *this;
}
constexpr value_type &get_x() { return m_x; }
constexpr value_type get_x() const { return m_x; }
constexpr void set_x(value_type x) { m_x = x; }
constexpr value_type &get_y() { return m_y; }
constexpr value_type get_y() const { return m_y; }
constexpr void set_y(value_type y) { m_y = y; }
constexpr value_type &get_z() { return m_z; }
constexpr value_type get_z() const { return m_z; }
constexpr void set_z(value_type z) { m_z = z; }
constexpr point_type &operator+=(const point_type &rhs)
{
m_x += rhs.m_x;
m_y += rhs.m_y;
m_z += rhs.m_z;
return *this;
}
constexpr point_type &operator+=(value_type d)
{
m_x += d;
m_y += d;
m_z += d;
return *this;
}
template <typename F2>
friend constexpr auto operator+(const point_type &lhs, const point_type<F2> &rhs)
{
return point_type<std::common_type_t<value_type, F2>>(lhs.m_x + rhs.m_x, lhs.m_y + rhs.m_y, lhs.m_z + rhs.m_z);
}
constexpr point_type &operator-=(const point_type &rhs)
{
m_x -= rhs.m_x;
m_y -= rhs.m_y;
m_z -= rhs.m_z;
return *this;
}
constexpr point_type &operator-=(value_type d)
{
m_x -= d;
m_y -= d;
m_z -= d;
return *this;
}
template <typename F2>
friend constexpr auto operator-(const point_type &lhs, const point_type<F2> &rhs)
{
return point_type<std::common_type_t<value_type, F2>>(lhs.m_x - rhs.m_x, lhs.m_y - rhs.m_y, lhs.m_z - rhs.m_z);
}
friend constexpr point_type operator-(const point_type &pt)
{
return point_type(-pt.m_x, -pt.m_y, -pt.m_z);
}
constexpr point_type &operator*=(value_type rhs)
{
m_x *= rhs;
m_y *= rhs;
m_z *= rhs;
return *this;
}
template <typename F2>
friend constexpr auto operator*(const point_type &pt, F2 f)
{
return point_type<std::common_type_t<value_type, F2>>(pt.m_x * f, pt.m_y * f, pt.m_z * f);
}
template <typename F2>
friend constexpr auto operator*(F2 f, const point_type &pt)
{
return point_type<std::common_type_t<value_type, F2>>(pt.m_x * f, pt.m_y * f, pt.m_z * f);
}
constexpr point_type &operator/=(value_type rhs)
{
m_x /= rhs;
m_y /= rhs;
m_z /= rhs;
return *this;
}
template <typename F2>
friend constexpr auto operator/(const point_type &pt, F2 f)
{
return point_type<std::common_type_t<value_type, F2>>(pt.m_x / f, pt.m_y / f, pt.m_z / f);
}
constexpr value_type normalize()
{
auto length = m_x * m_x + m_y * m_y + m_z * m_z;
if (length > 0)
{
length = std::sqrt(length);
operator/=(length);
}
return length;
}
constexpr void rotate(const quaternion &q)
{
quaternion_type<value_type> p(0, m_x, m_y, m_z);
p = q * p * conj(q);
m_x = p.get_b();
m_y = p.get_c();
m_z = p.get_d();
}
constexpr void rotate(const quaternion &q, point_type pivot)
{
operator-=(pivot);
rotate(q);
operator+=(pivot);
}
#if HAVE_LIBCLIPPER
operator clipper::Coord_orth() const
{
return clipper::Coord_orth(m_x, m_y, m_z);
}
#endif
constexpr operator std::tuple<const value_type &, const value_type &, const value_type &>() const
{
return std::make_tuple(std::ref(m_x), std::ref(m_y), std::ref(m_z));
}
constexpr operator std::tuple<value_type &, value_type &, value_type &>()
{
return std::make_tuple(std::ref(m_x), std::ref(m_y), std::ref(m_z));
}
#if defined(__cpp_impl_three_way_comparison)
constexpr auto operator<=>(const point_type &rhs) const = default;
#else
constexpr bool operator==(const point_type &rhs) const
{
return m_x == rhs.m_x and m_y == rhs.m_y and m_z == rhs.m_z;
}
constexpr bool operator!=(const point_type &rhs) const
{
return not operator==(rhs);
}
#endif
// consider point as a vector... perhaps I should rename point?
constexpr value_type length_sq() const
{
return m_x * m_x + m_y * m_y + m_z * m_z;
}
constexpr value_type length() const
{
return std::sqrt(length_sq());
}
friend std::ostream &operator<<(std::ostream &os, const point_type &pt)
{
os << '(' << pt.m_x << ',' << pt.m_y << ',' << pt.m_z << ')';
return os;
}
};
using point = point_type<float>;
// --------------------------------------------------------------------
// several standard 3d operations
template <typename F1, typename F2>
constexpr auto distance_squared(const point_type<F1> &a, const point_type<F2> &b)
{
return (a.m_x - b.m_x) * (a.m_x - b.m_x) +
(a.m_y - b.m_y) * (a.m_y - b.m_y) +
(a.m_z - b.m_z) * (a.m_z - b.m_z);
}
template <typename F1, typename F2>
constexpr auto distance(const point_type<F1> &a, const point_type<F2> &b)
{
return std::sqrt(
(a.m_x - b.m_x) * (a.m_x - b.m_x) +
(a.m_y - b.m_y) * (a.m_y - b.m_y) +
(a.m_z - b.m_z) * (a.m_z - b.m_z));
}
template <typename F1, typename F2>
inline constexpr auto dot_product(const point_type<F1> &a, const point_type<F2> &b)
{
return a.m_x * b.m_x + a.m_y * b.m_y + a.m_z * b.m_z;
}
template <typename F1, typename F2>
inline constexpr auto cross_product(const point_type<F1> &a, const point_type<F2> &b)
{
return point_type<std::common_type_t<F1, F2>>(
a.m_y * b.m_z - b.m_y * a.m_z,
a.m_z * b.m_x - b.m_z * a.m_x,
a.m_x * b.m_y - b.m_x * a.m_y);
}
template <typename F>
constexpr auto angle(const point_type<F> &p1, const point_type<F> &p2, const point_type<F> &p3)
{
point_type<F> v1 = p1 - p2;
point_type<F> v2 = p3 - p2;
return std::acos(dot_product(v1, v2) / (v1.length() * v2.length())) * 180 / kPI;
}
template <typename F>
constexpr auto dihedral_angle(const point_type<F> &p1, const point_type<F> &p2, const point_type<F> &p3, const point_type<F> &p4)
{
point_type<F> v12 = p1 - p2; // vector from p2 to p1
point_type<F> v43 = p4 - p3; // vector from p3 to p4
point_type<F> z = p2 - p3; // vector from p3 to p2
point_type<F> p = cross_product(z, v12);
point_type<F> x = cross_product(z, v43);
point_type<F> y = cross_product(z, x);
auto u = dot_product(x, x);
auto v = dot_product(y, y);
F result = 360;
if (u > 0 and v > 0)
{
u = dot_product(p, x) / std::sqrt(u);
v = dot_product(p, y) / std::sqrt(v);
if (u != 0 or v != 0)
result = std::atan2(v, u) * static_cast<F>(180 / kPI);
}
return result;
}
template <typename F>
constexpr auto cosinus_angle(const point_type<F> &p1, const point_type<F> &p2, const point_type<F> &p3, const point_type<F> &p4)
{
point_type<F> v12 = p1 - p2;
point_type<F> v34 = p3 - p4;
auto x = dot_product(v12, v12) * dot_product(v34, v34);
return x > 0 ? dot_product(v12, v34) / std::sqrt(x) : 0;
}
template <typename F>
constexpr auto distance_point_to_line(const point_type<F> &l1, const point_type<F> &l2, const point_type<F> &p)
{
auto line = l2 - l1;
auto p_to_l1 = p - l1;
auto p_to_l2 = p - l2;
auto cross = cross_product(p_to_l1, p_to_l2);
return cross.length() / line.length();
}
// --------------------------------------------------------------------
point nudge(point p, float offset);
// --------------------------------------------------------------------
quaternion construct_from_angle_axis(float angle, point axis);
std::tuple<double, point> quaternion_to_angle_axis(quaternion q);
quaternion construct_for_dihedral_angle(point p1, point p2, point p3, point p4,
float angle, float esd);
point centroid(const std::vector<point> &pts);
point center_points(std::vector<point> &pts);
quaternion align_points(const std::vector<point> &a, const std::vector<point> &b);
double RMSd(const std::vector<point> &a, const std::vector<point> &b);
// --------------------------------------------------------------------
template <int N>
class spherical_dots
{
public:
constexpr static int P = 2 * N * 1;
constexpr static double W = (4 * kPI) / P;
using array_type = typename std::array<point, P>;
using iterator = typename array_type::const_iterator;
static spherical_dots &instance()
{
static spherical_dots sInstance;
return sInstance;
}
std::size_t size() const { return P; }
const point operator[](uint32_t inIx) const { return m_points[inIx]; }
iterator begin() const { return m_points.begin(); }
iterator end() const { return m_points.end(); }
double weight() const { return W; }
spherical_dots()
{
const double
kGoldenRatio = (1 + std::sqrt(5.0)) / 2;
auto p = m_points.begin();
for (int32_t i = -N; i <= N; ++i)
{
double lat = std::asin((2.0 * i) / P);
double lon = std::fmod(i, kGoldenRatio) * 2 * kPI / kGoldenRatio;
p->m_x = std::sin(lon) * std::cos(lat);
p->m_y = std::cos(lon) * std::cos(lat);
p->m_z = std::sin(lat);
++p;
}
}
private:
array_type m_points;
};
} // namespace cif