.. _program_listing_file_cif++_point.hpp: Program Listing for File point.hpp ================================== |exhale_lsh| :ref:`Return to documentation for file ` (``cif++/point.hpp``) .. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS .. code-block:: cpp /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2020 NKI/AVL, Netherlands Cancer Institute * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include #include #include #include #include #include #if __has_include() #define HAVE_LIBCLIPPER 1 #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wignored-qualifiers" #include #pragma GCC diagnostic pop #endif namespace cif { // -------------------------------------------------------------------- const double kPI = 3.141592653589793238462643383279502884; // -------------------------------------------------------------------- template class quaternion_type { public: using value_type = T; constexpr explicit quaternion_type(value_type const &value_a = {}, value_type const &value_b = {}, value_type const &value_c = {}, value_type const &value_d = {}) : a(value_a) , b(value_b) , c(value_c) , d(value_d) { } constexpr explicit quaternion_type(std::complex const &z0, std::complex const &z1 = std::complex()) : a(z0.real()) , b(z0.imag()) , c(z1.real()) , d(z1.imag()) { } constexpr quaternion_type(quaternion_type const &) = default; constexpr quaternion_type(quaternion_type &&) = default; template constexpr explicit quaternion_type(quaternion_type const &rhs) : a(static_cast(rhs.a)) , b(static_cast(rhs.b)) , c(static_cast(rhs.c)) , d(static_cast(rhs.d)) { } // accessors constexpr value_type real() const { return a; } constexpr quaternion_type unreal() const { return { 0, b, c, d }; } constexpr void swap(quaternion_type &o) { std::swap(a, o.a); std::swap(b, o.b); std::swap(c, o.c); std::swap(d, o.d); } // assignment operators template constexpr quaternion_type &operator=(quaternion_type const &rhs) { a = static_cast(rhs.a); b = static_cast(rhs.b); c = static_cast(rhs.c); d = static_cast(rhs.d); return *this; } constexpr quaternion_type &operator=(quaternion_type const &rhs) { a = rhs.a; b = rhs.b; c = rhs.c; d = rhs.d; return *this; } constexpr quaternion_type &operator=(value_type const &rhs) { a = rhs; b = c = d = static_cast(0); return *this; } // parts are set to zero. constexpr quaternion_type &operator=(std::complex const &rhs) { a = rhs.real(); b = rhs.imag(); c = d = static_cast(0); return *this; } // other assignment-related operators constexpr quaternion_type &operator+=(value_type const &rhs) { a += rhs; return *this; } constexpr quaternion_type &operator+=(std::complex const &rhs) { a += std::real(rhs); b += std::imag(rhs); return *this; } template constexpr quaternion_type &operator+=(quaternion_type const &rhs) { a += rhs.a; b += rhs.b; c += rhs.c; d += rhs.d; return *this; } constexpr quaternion_type &operator-=(value_type const &rhs) { a -= rhs; return *this; } constexpr quaternion_type &operator-=(std::complex const &rhs) { a -= std::real(rhs); b -= std::imag(rhs); return *this; } template constexpr quaternion_type &operator-=(quaternion_type const &rhs) { a -= rhs.a; b -= rhs.b; c -= rhs.c; d -= rhs.d; return *this; } constexpr quaternion_type &operator*=(value_type const &rhs) { a *= rhs; b *= rhs; c *= rhs; d *= rhs; return *this; } constexpr quaternion_type &operator*=(std::complex const &rhs) { value_type ar = rhs.real(); value_type br = rhs.imag(); quaternion_type result(a * ar - b * br, a * br + b * ar, c * ar + d * br, -c * br + d * ar); swap(result); return *this; } friend constexpr quaternion_type operator*(const quaternion_type &a, const quaternion_type &b) { auto result = a; result *= b; return result; } template constexpr quaternion_type &operator*=(quaternion_type const &rhs) { value_type ar = static_cast(rhs.a); value_type br = static_cast(rhs.b); value_type cr = static_cast(rhs.c); value_type dr = static_cast(rhs.d); quaternion_type result(a * ar - b * br - c * cr - d * dr, a * br + b * ar + c * dr - d * cr, a * cr - b * dr + c * ar + d * br, a * dr + b * cr - c * br + d * ar); swap(result); return *this; } constexpr quaternion_type &operator/=(value_type const &rhs) { a /= rhs; b /= rhs; c /= rhs; d /= rhs; return *this; } constexpr quaternion_type &operator/=(std::complex const &rhs) { value_type ar = rhs.real(); value_type br = rhs.imag(); value_type denominator = ar * ar + br * br; quaternion_type result((+a * ar + b * br) / denominator, (-a * br + b * ar) / denominator, (+c * ar - d * br) / denominator, (+c * br + d * ar) / denominator); swap(result); return *this; } template constexpr quaternion_type &operator/=(quaternion_type const &rhs) { value_type ar = static_cast(rhs.a); value_type br = static_cast(rhs.b); value_type cr = static_cast(rhs.c); value_type dr = static_cast(rhs.d); value_type denominator = ar * ar + br * br + cr * cr + dr * dr; quaternion_type result((+a * ar + b * br + c * cr + d * dr) / denominator, (-a * br + b * ar - c * dr + d * cr) / denominator, (-a * cr + b * dr + c * ar - d * br) / denominator, (-a * dr - b * cr + c * br + d * ar) / denominator); swap(result); return *this; } friend constexpr quaternion_type normalize(quaternion_type q) { std::valarray t(4); t[0] = q.a; t[1] = q.b; t[2] = q.c; t[3] = q.d; t *= t; value_type length = std::sqrt(t.sum()); if (length > 0.001) q /= static_cast(length); else q = quaternion_type(1, 0, 0, 0); return q; } friend constexpr quaternion_type conj(quaternion_type q) { return quaternion_type{ +q.a, -q.b, -q.c, -q.d }; } constexpr value_type get_a() const { return a; } constexpr value_type get_b() const { return b; } constexpr value_type get_c() const { return c; } constexpr value_type get_d() const { return d; } constexpr bool operator==(const quaternion_type &rhs) const { return a == rhs.a and b == rhs.b and c == rhs.c and d == rhs.d; } constexpr bool operator!=(const quaternion_type &rhs) const { return a != rhs.a or b != rhs.b or c != rhs.c or d != rhs.d; } constexpr operator bool() const { return a != 0 or b != 0 or c != 0 or d != 0; } private: value_type a, b, c, d; }; template inline quaternion_type spherical(T const &rho, T const &theta, T const &phi1, T const &phi2) { T cos_phi1 = std::cos(phi1); T cos_phi2 = std::cos(phi2); T a = std::cos(theta) * cos_phi1 * cos_phi2; T b = std::sin(theta) * cos_phi1 * cos_phi2; T c = std::sin(phi1) * cos_phi2; T d = std::sin(phi2); quaternion_type result(a, b, c, d); result *= rho; return result; } using quaternion = quaternion_type; // -------------------------------------------------------------------- template struct point_type { using value_type = F; value_type m_x, m_y, m_z; constexpr point_type() : m_x(0) , m_y(0) , m_z(0) { } constexpr point_type(value_type x, value_type y, value_type z) : m_x(x) , m_y(y) , m_z(z) { } template constexpr point_type(const point_type &pt) : m_x(static_cast(pt.m_x)) , m_y(static_cast(pt.m_y)) , m_z(static_cast(pt.m_z)) { } constexpr point_type(const std::tuple &pt) : point_type(std::get<0>(pt), std::get<1>(pt), std::get<2>(pt)) { } #if HAVE_LIBCLIPPER constexpr point_type(const clipper::Coord_orth &pt) : m_x(pt[0]) , m_y(pt[1]) , m_z(pt[2]) { } constexpr point_type &operator=(const clipper::Coord_orth &rhs) { m_x = rhs[0]; m_y = rhs[1]; m_z = rhs[2]; return *this; } #endif template constexpr point_type &operator=(const point_type &rhs) { m_x = static_cast(rhs.m_x); m_y = static_cast(rhs.m_y); m_z = static_cast(rhs.m_z); return *this; } constexpr value_type &get_x() { return m_x; } constexpr value_type get_x() const { return m_x; } constexpr void set_x(value_type x) { m_x = x; } constexpr value_type &get_y() { return m_y; } constexpr value_type get_y() const { return m_y; } constexpr void set_y(value_type y) { m_y = y; } constexpr value_type &get_z() { return m_z; } constexpr value_type get_z() const { return m_z; } constexpr void set_z(value_type z) { m_z = z; } constexpr point_type &operator+=(const point_type &rhs) { m_x += rhs.m_x; m_y += rhs.m_y; m_z += rhs.m_z; return *this; } constexpr point_type &operator+=(value_type d) { m_x += d; m_y += d; m_z += d; return *this; } template friend constexpr auto operator+(const point_type &lhs, const point_type &rhs) { return point_type>(lhs.m_x + rhs.m_x, lhs.m_y + rhs.m_y, lhs.m_z + rhs.m_z); } constexpr point_type &operator-=(const point_type &rhs) { m_x -= rhs.m_x; m_y -= rhs.m_y; m_z -= rhs.m_z; return *this; } constexpr point_type &operator-=(value_type d) { m_x -= d; m_y -= d; m_z -= d; return *this; } template friend constexpr auto operator-(const point_type &lhs, const point_type &rhs) { return point_type>(lhs.m_x - rhs.m_x, lhs.m_y - rhs.m_y, lhs.m_z - rhs.m_z); } friend constexpr point_type operator-(const point_type &pt) { return point_type(-pt.m_x, -pt.m_y, -pt.m_z); } constexpr point_type &operator*=(value_type rhs) { m_x *= rhs; m_y *= rhs; m_z *= rhs; return *this; } template friend constexpr auto operator*(const point_type &pt, F2 f) { return point_type>(pt.m_x * f, pt.m_y * f, pt.m_z * f); } template friend constexpr auto operator*(F2 f, const point_type &pt) { return point_type>(pt.m_x * f, pt.m_y * f, pt.m_z * f); } constexpr point_type &operator/=(value_type rhs) { m_x /= rhs; m_y /= rhs; m_z /= rhs; return *this; } template friend constexpr auto operator/(const point_type &pt, F2 f) { return point_type>(pt.m_x / f, pt.m_y / f, pt.m_z / f); } constexpr value_type normalize() { auto length = m_x * m_x + m_y * m_y + m_z * m_z; if (length > 0) { length = std::sqrt(length); operator/=(length); } return length; } constexpr void rotate(const quaternion &q) { quaternion_type p(0, m_x, m_y, m_z); p = q * p * conj(q); m_x = p.get_b(); m_y = p.get_c(); m_z = p.get_d(); } constexpr void rotate(const quaternion &q, point_type pivot) { operator-=(pivot); rotate(q); operator+=(pivot); } #if HAVE_LIBCLIPPER operator clipper::Coord_orth() const { return clipper::Coord_orth(m_x, m_y, m_z); } #endif constexpr operator std::tuple() const { return std::make_tuple(std::ref(m_x), std::ref(m_y), std::ref(m_z)); } constexpr operator std::tuple() { return std::make_tuple(std::ref(m_x), std::ref(m_y), std::ref(m_z)); } #if defined(__cpp_impl_three_way_comparison) constexpr auto operator<=>(const point_type &rhs) const = default; #else constexpr bool operator==(const point_type &rhs) const { return m_x == rhs.m_x and m_y == rhs.m_y and m_z == rhs.m_z; } constexpr bool operator!=(const point_type &rhs) const { return not operator==(rhs); } #endif // consider point as a vector... perhaps I should rename point? constexpr value_type length_sq() const { return m_x * m_x + m_y * m_y + m_z * m_z; } constexpr value_type length() const { return std::sqrt(length_sq()); } friend std::ostream &operator<<(std::ostream &os, const point_type &pt) { os << '(' << pt.m_x << ',' << pt.m_y << ',' << pt.m_z << ')'; return os; } }; using point = point_type; // -------------------------------------------------------------------- // several standard 3d operations template constexpr auto distance_squared(const point_type &a, const point_type &b) { return (a.m_x - b.m_x) * (a.m_x - b.m_x) + (a.m_y - b.m_y) * (a.m_y - b.m_y) + (a.m_z - b.m_z) * (a.m_z - b.m_z); } template constexpr auto distance(const point_type &a, const point_type &b) { return std::sqrt( (a.m_x - b.m_x) * (a.m_x - b.m_x) + (a.m_y - b.m_y) * (a.m_y - b.m_y) + (a.m_z - b.m_z) * (a.m_z - b.m_z)); } template inline constexpr auto dot_product(const point_type &a, const point_type &b) { return a.m_x * b.m_x + a.m_y * b.m_y + a.m_z * b.m_z; } template inline constexpr auto cross_product(const point_type &a, const point_type &b) { return point_type>( a.m_y * b.m_z - b.m_y * a.m_z, a.m_z * b.m_x - b.m_z * a.m_x, a.m_x * b.m_y - b.m_x * a.m_y); } template constexpr auto angle(const point_type &p1, const point_type &p2, const point_type &p3) { point_type v1 = p1 - p2; point_type v2 = p3 - p2; return std::acos(dot_product(v1, v2) / (v1.length() * v2.length())) * 180 / kPI; } template constexpr auto dihedral_angle(const point_type &p1, const point_type &p2, const point_type &p3, const point_type &p4) { point_type v12 = p1 - p2; // vector from p2 to p1 point_type v43 = p4 - p3; // vector from p3 to p4 point_type z = p2 - p3; // vector from p3 to p2 point_type p = cross_product(z, v12); point_type x = cross_product(z, v43); point_type y = cross_product(z, x); auto u = dot_product(x, x); auto v = dot_product(y, y); F result = 360; if (u > 0 and v > 0) { u = dot_product(p, x) / std::sqrt(u); v = dot_product(p, y) / std::sqrt(v); if (u != 0 or v != 0) result = std::atan2(v, u) * static_cast(180 / kPI); } return result; } template constexpr auto cosinus_angle(const point_type &p1, const point_type &p2, const point_type &p3, const point_type &p4) { point_type v12 = p1 - p2; point_type v34 = p3 - p4; auto x = dot_product(v12, v12) * dot_product(v34, v34); return x > 0 ? dot_product(v12, v34) / std::sqrt(x) : 0; } template constexpr auto distance_point_to_line(const point_type &l1, const point_type &l2, const point_type &p) { auto line = l2 - l1; auto p_to_l1 = p - l1; auto p_to_l2 = p - l2; auto cross = cross_product(p_to_l1, p_to_l2); return cross.length() / line.length(); } // -------------------------------------------------------------------- point nudge(point p, float offset); // -------------------------------------------------------------------- quaternion construct_from_angle_axis(float angle, point axis); std::tuple quaternion_to_angle_axis(quaternion q); quaternion construct_for_dihedral_angle(point p1, point p2, point p3, point p4, float angle, float esd); point centroid(const std::vector &pts); point center_points(std::vector &pts); quaternion align_points(const std::vector &a, const std::vector &b); double RMSd(const std::vector &a, const std::vector &b); // -------------------------------------------------------------------- template class spherical_dots { public: constexpr static int P = 2 * N * 1; constexpr static double W = (4 * kPI) / P; using array_type = typename std::array; using iterator = typename array_type::const_iterator; static spherical_dots &instance() { static spherical_dots sInstance; return sInstance; } std::size_t size() const { return P; } const point operator[](uint32_t inIx) const { return m_points[inIx]; } iterator begin() const { return m_points.begin(); } iterator end() const { return m_points.end(); } double weight() const { return W; } spherical_dots() { const double kGoldenRatio = (1 + std::sqrt(5.0)) / 2; auto p = m_points.begin(); for (int32_t i = -N; i <= N; ++i) { double lat = std::asin((2.0 * i) / P); double lon = std::fmod(i, kGoldenRatio) * 2 * kPI / kGoldenRatio; p->m_x = std::sin(lon) * std::cos(lat); p->m_y = std::cos(lon) * std::cos(lat); p->m_z = std::sin(lat); ++p; } } private: array_type m_points; }; } // namespace cif