.. _program_listing_file_cif++_symmetry.hpp: Program Listing for File symmetry.hpp ===================================== |exhale_lsh| :ref:`Return to documentation for file ` (``cif++/symmetry.hpp``) .. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS .. code-block:: cpp /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2020 NKI/AVL, Netherlands Cancer Institute * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include "cif++/exports.hpp" #include "cif++/matrix.hpp" #include "cif++/point.hpp" #include #include #include #if defined(__cpp_impl_three_way_comparison) #include #endif namespace cif { // -------------------------------------------------------------------- inline point operator*(const matrix3x3 &m, const point &pt) { return { m(0, 0) * pt.m_x + m(0, 1) * pt.m_y + m(0, 2) * pt.m_z, m(1, 0) * pt.m_x + m(1, 1) * pt.m_y + m(1, 2) * pt.m_z, m(2, 0) * pt.m_x + m(2, 1) * pt.m_y + m(2, 2) * pt.m_z }; } // -------------------------------------------------------------------- enum class space_group_name { full, xHM, Hall }; struct space_group { const char *name; const char *xHM; const char *Hall; int nr; }; extern CIFPP_EXPORT const space_group kSpaceGroups[]; extern CIFPP_EXPORT const std::size_t kNrOfSpaceGroups; // -------------------------------------------------------------------- struct symop_data { constexpr symop_data(const std::array &data) : m_packed((data[0] bitand 0x03ULL) << 34 bitor (data[1] bitand 0x03ULL) << 32 bitor (data[2] bitand 0x03ULL) << 30 bitor (data[3] bitand 0x03ULL) << 28 bitor (data[4] bitand 0x03ULL) << 26 bitor (data[5] bitand 0x03ULL) << 24 bitor (data[6] bitand 0x03ULL) << 22 bitor (data[7] bitand 0x03ULL) << 20 bitor (data[8] bitand 0x03ULL) << 18 bitor (data[9] bitand 0x07ULL) << 15 bitor (data[10] bitand 0x07ULL) << 12 bitor (data[11] bitand 0x07ULL) << 9 bitor (data[12] bitand 0x07ULL) << 6 bitor (data[13] bitand 0x07ULL) << 3 bitor (data[14] bitand 0x07ULL) << 0) { } bool operator==(const symop_data &rhs) const { return m_packed == rhs.m_packed; } bool operator<(const symop_data &rhs) const { return m_packed < rhs.m_packed; } inline constexpr int unpack3(int offset) const { int result = (m_packed >> offset) bitand 0x03; return result == 3 ? -1 : result; } inline constexpr int unpack7(int offset) const { return (m_packed >> offset) bitand 0x07; } constexpr std::array data() const { return { unpack3(34), unpack3(32), unpack3(30), unpack3(28), unpack3(26), unpack3(24), unpack3(22), unpack3(20), unpack3(18), unpack7(15), unpack7(12), unpack7(9), unpack7(6), unpack7(3), unpack7(0) }; } private: friend struct symop_datablock; const uint64_t kPackMask = (~0ULL >> (64 - 36)); symop_data(uint64_t v) : m_packed(v bitand kPackMask) { } uint64_t m_packed; }; struct symop_datablock { constexpr symop_datablock(int spacegroup, int rotational_number, const std::array &rt_data) : m_v((spacegroup bitand 0xffffULL) << 48 bitor (rotational_number bitand 0xffULL) << 40 bitor symop_data(rt_data).m_packed) { } uint16_t spacegroup() const { return m_v >> 48; } symop_data symop() const { return symop_data(m_v); } uint8_t rotational_number() const { return (m_v >> 40) bitand 0xff; } private: uint64_t m_v; }; static_assert(sizeof(symop_datablock) == sizeof(uint64_t), "Size of symop_data is wrong"); extern CIFPP_EXPORT const symop_datablock kSymopNrTable[]; extern CIFPP_EXPORT const std::size_t kSymopNrTableSize; // -------------------------------------------------------------------- // Some more symmetry related stuff here. class datablock; class cell; class spacegroup; class rtop; struct sym_op; struct sym_op { public: sym_op(uint8_t nr = 1, uint8_t ta = 5, uint8_t tb = 5, uint8_t tc = 5) : m_nr(nr) , m_ta(ta) , m_tb(tb) , m_tc(tc) { } explicit sym_op(std::string_view s); sym_op(const sym_op &) = default; sym_op(sym_op &&) = default; sym_op &operator=(const sym_op &) = default; sym_op &operator=(sym_op &&) = default; constexpr bool is_identity() const { return m_nr == 1 and m_ta == 5 and m_tb == 5 and m_tc == 5; } explicit constexpr operator bool() const { return not is_identity(); } std::string string() const; #if defined(__cpp_impl_three_way_comparison) constexpr auto operator<=>(const sym_op &rhs) const = default; #else constexpr bool operator==(const sym_op &rhs) const { return m_nr == rhs.m_nr and m_ta == rhs.m_ta and m_tb == rhs.m_tb and m_tc == rhs.m_tc; } constexpr bool operator!=(const sym_op &rhs) const { return not operator==(rhs); } #endif uint8_t m_nr; uint8_t m_ta, m_tb, m_tc; }; static_assert(sizeof(sym_op) == 4, "Sym_op should be four bytes"); namespace literals { inline sym_op operator""_symop(const char *text, std::size_t length) { return sym_op({ text, length }); } } // namespace literals // -------------------------------------------------------------------- // The transformation class class transformation { public: transformation(const symop_data &data); transformation(const matrix3x3 &r, const cif::point &t); transformation(const transformation &) = default; transformation(transformation &&) = default; transformation &operator=(const transformation &) = default; transformation &operator=(transformation &&) = default; point operator()(point pt) const { if (m_q) pt.rotate(m_q); else pt = m_rotation * pt; return pt + m_translation; } friend transformation operator*(const transformation &lhs, const transformation &rhs); friend transformation inverse(const transformation &t); transformation operator-() const { return inverse(*this); } friend class spacegroup; private: // Most rotation matrices provided by the International Tables // are really rotation matrices, in those cases we can construct // a quaternion. Unfortunately, that doesn't work for all of them void try_create_quaternion(); matrix3x3 m_rotation; quaternion m_q; point m_translation; }; // -------------------------------------------------------------------- // class cell class cell { public: cell(float a, float b, float c, float alpha = 90.f, float beta = 90.f, float gamma = 90.f); cell(const datablock &db); float get_a() const { return m_a; } float get_b() const { return m_b; } float get_c() const { return m_c; } float get_alpha() const { return m_alpha; } float get_beta() const { return m_beta; } float get_gamma() const { return m_gamma; } float get_volume() const; matrix3x3 get_orthogonal_matrix() const { return m_orthogonal; } matrix3x3 get_fractional_matrix() const { return m_fractional; } private: void init(); float m_a, m_b, m_c, m_alpha, m_beta, m_gamma; matrix3x3 m_orthogonal, m_fractional; }; // -------------------------------------------------------------------- int get_space_group_number(const datablock &db); int get_space_group_number(std::string_view spacegroup); int get_space_group_number(std::string_view spacegroup, space_group_name type); class spacegroup : public std::vector { public: spacegroup(const datablock &db) : spacegroup(get_space_group_number(db)) { } spacegroup(std::string_view name) : spacegroup(get_space_group_number(name)) { } spacegroup(std::string_view name, space_group_name type) : spacegroup(get_space_group_number(name, type)) { } spacegroup(int nr); int get_nr() const { return m_nr; } std::string get_name() const; point operator()(const point &pt, const cell &c, sym_op symop) const; point inverse(const point &pt, const cell &c, sym_op symop) const; private: int m_nr; std::size_t m_index; }; // -------------------------------------------------------------------- class crystal { public: crystal(const datablock &db) : m_cell(db) , m_spacegroup(db) { } crystal(const cell &c, const spacegroup &sg) : m_cell(c) , m_spacegroup(sg) { } crystal(const crystal &) = default; crystal(crystal &&) = default; crystal &operator=(const crystal &) = default; crystal &operator=(crystal &&) = default; const cell &get_cell() const { return m_cell; } const spacegroup &get_spacegroup() const { return m_spacegroup; } point symmetry_copy(const point &pt, sym_op symop) const { return m_spacegroup(pt, m_cell, symop); } point inverse_symmetry_copy(const point &pt, sym_op symop) const { return m_spacegroup.inverse(pt, m_cell, symop); } std::tuple closest_symmetry_copy(point a, point b) const; private: cell m_cell; spacegroup m_spacegroup; }; // -------------------------------------------------------------------- // Symmetry operations on points inline point orthogonal(const point &pt, const cell &c) { return c.get_orthogonal_matrix() * pt; } inline point fractional(const point &pt, const cell &c) { return c.get_fractional_matrix() * pt; } // -------------------------------------------------------------------- } // namespace cif